Early detection of liver disease using data visualisation and classification method
نویسندگان
چکیده
Detection of early-stage liver diseases is a challenge in medical field. Automated diagnostics based on machine learning therefore could be very important for liver tests of patients. This paper investigates 225 liver function test records (each record include 14 features), which is a subset from 1000 patients’ liver function test records that include the records of 25 patients with liver disease from a community hospital. We combine support vector data description (SVDD) with data visualisation techniques and eywords: achine learning iver disease lassification VDD isualisation SO the glowworm swarm optimisation (GSO) algorithm to improve diagnostic accuracy. The results show that the proposed method can achieve 96% sensitivity, 86.28% specificity, and 84.28% accuracy. The new method is thus well-suited for diagnosing early liver disease. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملHippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images
Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...
متن کاملImprovement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images
Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...
متن کاملتشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روشهای هستهای
Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomed. Signal Proc. and Control
دوره 11 شماره
صفحات -
تاریخ انتشار 2014